@ https:/Intrs.nasa.gov/search.jsp?R=20100012871 2019-07-30T08:18:17+00:00Z

Assessing Requirements Volatility and Risk using

Bayesian Networks
Michael S. Russell
Booz | Allen | Hamilton
russell _michael@bah.com

Abstract

There are many factors that affect the level
of requirements volatility a system
experiences over its lifecycle and the risk
that volatility imparts. Improper
requirements generation, undocumented user
expectations, conflicting design decisions,
and anticipated / unanticipated world states
are representative of these volatility factors.
Combined, these volatility factors can
increase programmatic risk and adversely
affect successful system development. This
paper proposes that a Bayesian Network can
be used to support reasonable judgments
concerning the most likely sources and types
of requirements volatility a developing
system will experience prior to starting
development; and by doing so it is possible
to predict the level of requirements volatility
the system will experience over its lifecycle.
This assessment offers valuable insight to
the system’s developers, particularly by
providing a starting point for risk mitigation
planning and execution.

Introduction

When a new system is being considered for
development, the system’s users, developers,
and other stakeholders establish a set of
requirements to be implemented by the
system. These requirements run the gamut
from high-level concepts to design-level
implementation. Over time, these
requirements change as the system concept
matures, user needs change, technology
advances, or in response to a host of other

&9

factors (Armour, 2000). Requirements
volatility is one term that describes this
change. Volatility, the inverse of stability, is
not necessary a bad thing. Some program
managers would like to have a volatile
schedule — as long as it is always being
extended. However, changing requirements
is generally viewed as detrimental to the
program.

Requirements volatility makes its presence
known in development projects of all sizes
and types. Jones (Jones, 1994) noted that
more than 70% of large software application
development programs experience volatility;
and this volatility, combined with poor
requirements development processes and
inadequate risk management, contributes to
poor system quality, schedule slips and cost
overruns. Jones also found that of the 60
projects surveyed, over 35% experienced
scope or purpose related requirements
volatility. A recent analysis of 44 different
system development efforts (Stark, 2002)
found that volatility affected about 63% of
the system’s initial requirements, and 6% of
these directly impacted the system’s scope.
Additionally, it was found that requirement
additions were much more likely than
requirement deletions during the
development phase of the lifecycle.
Additionally, Stark found that customer
changes accounted for 36% of overall
volatility, system requirement developers
accounted for 28%. and 36% were
attributable to the system’s developers.

Obviously, quantifying the effect of
requirements volatility on a system would

benefit program managers and other
stakeholders most notably supporting the
identification system development risks. If
the stakeholders were able to look at each
factor that causes volatility and derive a
quantifiable indicator of its impact prior to
program initiation, they would have the
information needed to plan for the
mitigation or avoidance of each volatility
factor. Additionally, process standards such
as Carnegie Mellon’s CMMI*™ (CMMI,
2001) require programs to track and assess
the impact of requirements volatility as part
of their program metrics. This paper
proposes a method for identifying volatility
factors, assessing them, and providing useful
information to the decision maker
concerning the likely impact volatility will
have on the program.

Methods to quantify volatility have been
previously proposed. Quality Goal
Modeling (Myers, 1988) is a rules-based
approach designed for software developers
using software quality metrics to validate
requirements and to identify potentially
volatile requirements. Quality Goal
Modeling judges the relative volatility risk
of each system requirement in terms of
imprecision, conflict, and multiplicity.
Additionally, it presupposes the program
manager is knowledgeable enough of new
system to list its essential characteristics and
rank those characteristics in importance.
This ranking is essential to determining the
impact each requirement may have should it
change. The method proposed in the paper
used system characteristics as a volatility
risk indicator, employing Bayesian analysis
rather than rules based analysis. Using
Bayesian analysis results in a more scaleable
analysis approach that can benefit from
volatility analysis preformed in previous
programs.

90

York (York, 2001) proposed the Volatility
of Requirements Assessment Method
(VRAM) to uncover potentially volatile
requirements early in a system’s lifecycle.
VRAM uses the Analytic Hierarchy Process
(AHP) to compare system requirements

~ against historical causes of volatility, such

as “User Needs Change.” The results of this
process are used as a decision aide to help
program managers determine if additional
requirements analysis should be conducted
prior to beginning system development.
York considered his research inconclusive
and found that even experts were not able to
accurately predict volatility. He emphasized
the importance of future research, especially
concerning enhanced support aids to
engineers in assessing volatility. This paper
proposes using a Bayesian Network to
provide a decision support aid.

The first challenge to developing this
method is determining the situations
indicative of future requirements volatility,
followed by determining the impact these
situations have on the system’s development.
As it is impractical to quantify the entire set
of situations that might impact requirements
volatility, a representative set must be
chosen. Then the relationship between this
representative set and the anticipated level
of requirements volatility must be
established. Often, this relationship is
expressed in terms of experience-based
belief, rather than with hard data, which
tends to complicate any attempt to quantify
the effects of volatility.

The Bayesian approach to statistical
modeling relies on prior evidence to provide
a rational basis for design making (Lee,
1989), and the idea of using Bayesian
Analysis as a decision tool was noted in
(von Winterfeldt, 1996). Bayesian
statisticians are well versed in using limited
or incomplete data, unquantifiable beliefs,

and other “soft” evidence to derive useful
information for decision makers. By
understanding the impact specific volatility
factors have had on past system
development efforts the program manager
can use Bayesian analysis to turn this
previous information into a reasonable and
defendable prediction as to the level of
requirements volatility the new system may
experience. Other more commonly used
statistical methods rely on vast quantities of
hard data to make an inference as to what
the data might mean. Using Bayesian
analysis allows the program manager to
make a reasonable judgment about volatility
early in the program when the large amounts
of data needed to support other statistical
methods is not available.

Requirement Volatility Factors

There are as many factors for requirements
volatility as there are people who write
requirements, with each person having
his/her own understanding why
requirements change and the effect of
specific volatility factors. As it is not
feasible to evaluate every potential source of
requirements volatility and quantify its
effect on a developing system, a
representative set of volatility factors that
most directly effect system development
should be evaluated. Ideally, this
representative set would be general enough
to be domain insensitive and applicable to a
wide assortment of development systems.
By adhering to this ideal; the method, and
any tools developed using it, could be
applied to many different programs.
Additionally, the lessons learned in each
program can be retained and used to provide
better estimates of requirements volatility in
future programs.

The following set of volatility factors was
derived from literature (Sommerville, 1992;

91

Brooks, 1987; Christel 1992), interviews
with program managers, systems engineers,
and examinations of previous system
development efforts, as appears below.

o Schedule Stability: Measures the
anticipated stability of the project’s
schedule. A shorted schedule can
affect requirements development
through the elimination of
requirements engineering time,
resulting in missed or poorly
specified requirements. A shorter
the development schedule may mean
that some requirements initially
specified will have to be dropped,
which affects the overall system
design. While shortening a schedule
could be considered to be
detrimental, lengthening a schedule
may not necessary be good.
Sometimes a longer schedule gives
the systems stakeholders more
opportunities to change requirements.
The effects of any schedule change
should be carefully considered.

e Budget Stability: Measures the
anticipated stability of the project’s
budget. Increases in project budget
often come with additional,
unplanned requirements. These late
arriving requirements pose
integration challenges. Decreases in
budget may cause non-core
functional requirements to be
dropped, which affects overall
requirements stability and integration.

e Scope Stability: Measures the
anticipated stability of the project’s
scope. Changes in the project’s
scope may have a serious impact on
the requirements defined for the
system. In the worst case, the
purpose for the system may be
completely changed, leading to a

whole new set of
requirements.

System Need: Measures the level at
which the user’s need for the new
system has been established.
Without clearly defining the user’s
need for the system, the requirements
that are critical to making the system
useful for its intended audience may
not be documented and subsequently
built into the system.

Changing Priorities: Measures
whether or not, and how often, the
system’s customer’s priorities
change. Changing priorities are
related to changing needs; however,
where system need deals with how
that system will solve a problem the
customer has priorities measure how
critical that need is. A system that
starts out as a high priority will be
provided with plentiful resources and
development time.

Changing Expectations: Measures
how often or to what extent the
customer’s expectations for the
system change. Expectations are
hard to quantify, as they are rarely
documented and may not appear as
defined requirements. Expectations
not only drive how a project is
perceived, but also its future success
and how individuals react to it.
Many times the system’s customer
may anticipate the system will meet
a specific need while the testable
requirements that would enable that
expectation to be met are never
documented.

Operational Concept Stability:
Measures the stability of the systems
operational concept. The operational
concept defines the system’s place in
the world and how it fits into the
overall enterprise. It also describes
how the ultimate user, who may not

system

92

be the system’s customer, intends to
use the system to accomplish a
mission resulting in a shared vision
for the system (Wheatcraft, 2003).
System Interface Plan: Measures
whether or not a system interface
document is scheduled for
development. The system interface
document lays out physical and
functional designs for how the
developing system will interface
with other systems.

System Design Plan: Measures
whether or not a system design
document is scheduled for
development. Often this document
represents the first time all system
requirements are identified and
documented (Wilson 1997). This
level of detail is normally not
included in system scope and
operational need documents.

System Test Plan: Measures
whether or not a system test plan will
be produced and, if so, how formal
the system test process will be.
Without a clearly defined system
testing approach, it is impossible to
know whether or not the system
requirements have been met or
whether the documented
requirements are the right ones.
Technical Change: Many systems,
especially those in the information
technology domain, are required to
incorporate the leading edge of
technology. Unfortunately,
technology constantly changes, and
this change is rapid (Armour, 2000).
Many times a newly developed
system is obsolete when fielded due
to rapid technology change. Even
when technology changes don't have
a direct impact on system is
development it may have an impact

on the customer’s expectations for
the system.

Requirement Traceability:
Measures the extent to which
requirements are traceable to user
needs, expectations, and the system's
scope. Requirements not directly
traceable to one of these or to
another requirement are prime

candidates to be modified or dropped.

Requirement Conflicts: Measures
the expected number of requirement
conflicts. Conflicts can occur in
many different, sometimes
unanticipated places within the
system’s design and can be difficult
to predict during system’s planning
stages. A conflict, such as a
messaging protocol not matching the
communications network that it must
be transmitted on, must be
adjudicated with the customer prior
to system design finalization. There
are many requirements engineering
software tools on the market, such as
DOORs®, that can be wused to
support the projects requirement
development effort. By
implementing these tools, the
number of conflicting requirements
is generally reduced; and traceability
between requirements and from
requirements to systems concepts
and objectives is increased.

Implied Requirements: Measures
the expected number of implied
requirements. An implied
requirement is not specifically stated
by the customer, but must be
implemented in order to realize the
customer’s original requirement.
One root cause of implied
requirements is unstructured, natural
language in requirements
development which leads to
ambiguity, inaccuracy, and assumed

93

requirements (Stokes, 1991).
Additionally, what seems like a
simple requirement or requirement
change to the customer brings with it
costly implied requirements. For
instance, adding an additional
antenna to an aircraft seems like a
minor change; however, any new
antenna would mandate a new hole
in the aircraft’s pressure hull
requiring extensive FAA mandated
pressure testing and hull
recertification. These tests are time
intensive and more expensive than
the antenna itself.

Interoperability =~ Requirements:
Measures the anticipated amount of
interoperability requirements. These
requirements may deal with external
systems or system subcomponents.
These requirements are implemented
and given structure by the system
interface plan. Without this plan,
these requirements lack context, and
potential overlaps or conflicts
between them are hard to uncover.
Changes to systems that must
interoperate with the new system can
greatly impact requirements in
unanticipated ways. When
evaluating the potential impact of
interoperability requirements, both
their use within the system and as
conduits to other systems must be
considered.

Environment Change: Measures
the impact a change in the physical
environment that the system operates
in may have on requirements. This
can work in two ways. First, the
user's need may now require the
system to work in an Arctic or other
extreme environment. Second, the
expected environment may change in
some manner.

System Complexity: Measures the
relative complexity of the system.
This measure can vary depending on
the domain. An assembly line for
coat hangers isn't complex from a
technology perspective; however,
developing this system requires close
synchronization of many mechanical
subsystems. Conversely, an
embedded operating system for a
cellular telephone is a relativity
small piece of software that
represents technical complexity and
reliance on interoperability standards

to function correctly. Evaluating
complexity as it relates to
requirements volatility requires

sound judgments concerning how
likely the complexity of the system is
to drive requirements change. In
many cases, higher systems
complexity is more likely to exhibit
requirements volatility.

Reuse Requirements: Measures the
relative level of reusable component
integration desired by the customer
or required based on technical
standards within the domain.
Reusing components of existing
systems, hardware and/or software,
to support new system development

is an increasingly = common
requirement. Component reuse
allows for greater built-in

interoperability within a domain and
may lead to decreased costs, but only
if interfaces to the reusable
components are accessible. System
complexity will increase if it is
known or anticipated that the
interfaces to the reuse component
will be difficult to decipher.

Subject Matter Expert (SME)
Availability: Measures how
available SMEs will be to assist in

the requirements engineering process.

94

SMEs, either from the customer or
domain, are key to successfully
generating stable requirements. The
developer may have a good bit of
domain experience; however, the
best judge of how well requirements
have been identified are the
customer's SMEs

Analyst Skill: Measures the
experience level of the analysts who
are working with the customer and
SMEs to facilitate and document
requirements.

Program Management Skill:
Measures the experience level of the
program management team. Skill is
needed in two areas to mitigate
volatile requirements. First,
managing the development team and
the requirements development
process. Second, managing the
customer. The first skill is much
easier to judge than the second, the
second being the most vital.
Developer Skill: Measures the
ability of the developers to interpret
and transform system requirements
into system design correctly and
recognize the impact that
requirement change will have on the
system. The developers have the
best understanding of functional
dependencies and can usually
provide the best impact estimate for
a changing requirement.

Defined Processes: Measures the
existence and institution of
requirements engineering processes.
Process standards set out a defined
and repeatable process to support
requirements work. When followed,
they help ensure requirements are
derived, documented, and changed in
a reasonable manner. When an
organization fails to implement a

consistent requirements engineering
process, volatility will follow.
Project Turnover: Measures the
amount of employee turnover
expected during the project. Project
employee turnover can greatly affect
the way requirements are
documented and interpreted even
with a well-defined configuration
management process.

Customer Turnover: Measures the
amount of customer turnover
expected during the project.
Customer employee turnover can be
a serious issue for a development
team, as the new customer
representative may have a
completely different idea as to what
the system is to do. Customer
management is essential to success.
Company Domain Experience:
Measures the amount of experience
the development organization has in
the systems domain. Companies
with lots of domain experience
should be able to lean on that
experience to produce less volatile
requirements. Simply being
technically able to build the product
is not enough. A company that
builds financial planning software
may have the technical expertise to
build a military command and
control system, but a lack of domain
knowledge will result in more
volatile requirements. Of course a
lack of domain experience is not
always a bad thing. A developer
with limited domain experience will
be forced to ask many questions to
fill in gaps that the customer just
assumed everyone knew and didn't
bother defining. With a more
experienced company, these gaps are
filled by implied, experienced-based

95

requirements that may or may not
meet the user’s expectations.

Volatility Measurement

A note on requirements; a requirement that
is not verifiable is not a requirement. In the
same way, in order to make a judgment
about the potential impact of a requirement
volatility factor, some way to measure its
impact must be established. The difficultly
in measuring the impact each factor may
have on overall requirements volatility is
that these impacts are inherently
unquantifiable. ~ Value judgments, prior
beliefs, and “gut-feelings” tend to color
evaluations of factors such as “will the
customers expectations change” or “how
many requirement conflicts will appear.”

Typical systems engineering methods, from
the waterfall to the spiral, all consider
volatility risk (Sommerville, 1992). In
particular, the spiral was designed
specifically to take volatility into account
throughout the lifecycle (Boehm, 2000);
however these methods do not provide a
systematic method to measure potential
volatility. Without a way to measure and
then relate volatility factors, there will be
gaps in a program’s volatility analysis. Here
Bayesian analysis becomes a valuable
resource for judging the impact of each
factor while programming planning has yet
to be completed. By combining this method
with the spiral development lifecycle,
volatility measurement will be more
rigorous and cause — effect relationships
between factors will be maintained.

Building the Requirements VoAlatility
Model

At its most fundamental level, making a
judgment about how different volatility
factors will affect a program during the

initial planning stages is a decision problem;
one that could potentially be solved in many
ways. Hopefully, the program manager will
use his/her experience, or that of others, to
make a reasonable and informed decision
concerning the extent to which the
program’s requirements will be subject to
change, and to characterize that change. In
any case, the program manager will make
assumptions about the program, its customer,
and world states both within and outside his
control. Based on this knowledge, the
program manager can take many actions,
each with its own consequences. The
challenge to the program manager is to
make sound judgments or inferences based
on prior knowledge or the experience of
others, while oftentimes not knowing all the
consequences of potential actions.

In order to decide on the best actions, those
that minimize or mitigate the effects of
volatility on the program, the program
manager must implement a method that
represent s his/her beliefs about each
volatility factor and make an inference about
their impact to the overall program. Armed
with this information, he can build volatility
mitigation planning into the program plan.

Bayesian analysis is a statistical method for
supporting the decision making process by
representing beliefs about the world as
probabilities. These probabilities are not
definitive, meaning reasonable people might
disagree about the validity and applicability
of the resulting data. However, given
informed prior information, a reasonable and
defendable inference about new data based
on previous data can be made (Laskey,
2003). For program managers, this means
factors such as budget shortfalls and
documentation problems that have caused
requirements volatility on past programs can
reasonably be used to predict the same

96

problems on the current project given
similar development environments.

In order to apply the Bayesian approach, a
method for combining information about a
project’s perceived level of volatility with
Bayesian reasoning must be established.
This can be accomplished through the
development and application of a Bayesian
network. A Bayesian Network (BN), based
on probability theory, is a knowledge
representation that effectively captures the
uncertainties and conditional independences
present in a given domain. As such, it can
be used to make reasonable inferences with
limited data (Jenson, 1997).

BN’s are drawn as directed graphs
comprised of nodes and arcs. The nodes
represent variables whose value is uncertain
and the arcs represent dependency
relationships between the variables. As a
computational architecture, a BN allows the
user or application to declare “evidence” on
some of the nodes and, through a process
called “evidence accumulation,” compute
revised probabilities for all other nodes in
the network. (Laskey, 2002)

It has been postulated that BNs can be
inadequate as a general knowledge
representation language for large and
complex domains (Mahoney, 1996). As
noted previously, it is not reasonable to try
to quantify every factor that could impact
requirement volatility for a system. This is
what makes the Bayesian approach so
valuable. It is also important to choose
volatility factors that are not domain specific,
so the resulting BN can be used repeatedly
and among many domains. Staying as
domain generic as practical means that BN
tools would not have to be customized for
each project and a repository of volatility
information can be created (Koller, 1997).

Unless a specialized decision support tool
incorporating a Bayesian network model is
available, developing this tool for a single
application will consume significant
resources during the beginning stages of a
program. So the cost of developing the
model must be weighed against the benefit
the model provides to the program manager.
The Bayesian network model developed to
support this research provides a good
starting point for program managers seeking
to incorporate Bayesian inference into their
decision making process.

Using BNs to help solve decision problems
or derive useful information is not a panacea
for every situation; however, it has been
found to be very useful in solving a variety
of real life problems such as quickly
identifying friendly from enemy aircraft
(Laskey, G, 2002). Using the volatility
factors identified in the previous section as
the nodes of the BN, a model was
constructed using Norsys Corporation’s
Netica software tool.

(Scope_Stability) (Defined_Processes
OPCON, Stahity
- - System_Complexit
Implied_Require

Schedule_Stabitity
Require_Conflicts
Budget_Stability

T
(Compary_Doman_Ex)

System Test_Plan

System Design_Plan Changing_Expectations
Technical Change
System_Need
Analyst_Skill
Changing_Priorities Customer_Tumaver
(Developer_Skill y

Environment_Change

Figure 1: Requirements Volatility BN

The BN was constructed as a “Naive Bays”
Network. A naive Bays network assumes

97

that the features of the BN, in this case the
volatility factors, are conditionally
independent from each other given the
expected volatility. Another type of BN is
an “Optimal Classifier,” which takes
dependencies and other types of
relationships between nodes, states, and
other model elements into account. (Laskey,

2003)

The naive BN was used for this model for
two reasons. First, the optimal classifier -
method is more accurate; however, it carries
with it a greater computational load and
need for more complete information
concerning the relationships between
network nodes (Laskey, 2003). As the
requirements volatility model is to be used
during the early stages of program
development and is intended to support
rough order of magnitude predictions, it was
felt that the data necessary to support a fully
optimized model might not be present. Also,
the time needed to enter and run the
optimized model might limit its use by busy

program managers. A method such as using
a BN to predict requirements volatility must
be used to be useful. This was taken into
consideration. Second, research concerning
interrelationships between volatility factors

is immature, and there is not general
agreement within the industry as to which
factors influence other factors. While some
relationships are easy to infer, such as the
relationship between customer expectations
and a changing scope, others such as the
relationship between schedule slips and
requirement changes are harder to quantify.
As more research in this are is completed, it
would be wise to revisit the type of BN used
to support the volatility model at a later date.

Developing Priors

In order to be a useful tool, the BN must be
seeded with information describing the
various volatility factors that have impacted
systems in the past. The prior information
for the requirements volatility model was
developed based on reviews of pertinent
literature and by surveying requirements
engineers to uncover their beliefs about the
root causes of requirements volatility.

The first survey was web-based and
consisted of three parts. The part 1
contained 27 questions in 3 categories: (1)
technical and program management skills,
(2) requirement and design related, and (3)
project environment and prior planning.
The questions covered a range of
requirements engineering and project
environment challenges with the idea that
each one represented a root cause of
requirements volatility.

To verify that the questions asked were
clearly written and appropriate to the issue
at hand, a group of experienced engineers

was polled to validate the survey’s questions.

Most possessed 10+ years of project
management and requirements engineering
experience. As an additional verification
step, each survey respondent was asked to
list the top three reasons why they felt
requirements were subject to change in part

98

2. It was felt that part 2°s “free text” entry
style would be conducive to eliciting the
respondent’s true beliefs concerning
requirements volatility. As will be noted
later, the volatility factors listed in part 2
closely mirrored the more structured
questioning found in part 1.

Part 3 elicited demographic information
from each respondent, covering academic
and work experience background as well as
experience in the requirements generation
process. The demographic information
would be used to determine if a significant
variation occurred in the answers given by
respondents from different demographic
groups.

Although the survey was anonymous,
demographic information indicated variation
among respondents covering academic,
industry, and government perspectives, and
encompassing a variety of experience levels.
From these responses, a probability
distribution for each volatility factor was
developed. Based on these distributions, the
relative impact of each volatility factor on
overall volatility was derived.

Volatility factors dealing with the
customer’s expectations and defined need
for the system were rated as the most likely
causes of requirements volatility followed
closely by instability in the system’s scope.
Budget stability problems, customer
turnover, and technological advances within
the systems domain rounded out the group
of factors the survey respondents listed as
the most likely causes. Based on survey
responses, one of the original volatility
factors dealing with the effects of an
unstable Work Breakdown Structure (WBS)
was removed from the model. Additionally,
several factor names were changed to reflect
the often-repeated responses in part 2 of the
survey.

The next step in developing prior
information for the BN was to conduct a
second survey in which respondents were
asked to assess the impact of each volatility
factor on a series of five fictional scenarios.
Each scenario depicted a system
development project with good and bad
aspects. By assessing each factor in relation
to the scenario and the overall level of
requirements volatility the respondent felt
the system would exhibit, a matrix of
responses was developed. This matrix was
then wused to “learn” the probability

distribution of each node from the input data.

Information on probabilistic learning can be
found in (Laskey, 2003) and (Robert, 2001).

Using the Model to Support Decision
Making

To implement the model to predict the
overall level of requirements volatility, the
program manager would sit down with his
management team during the early stages of
the program’s development and record their
collective beliefs as to the extent each
volatility factor is present in the current
program. These beliefs are entered into the
model. Based on the beliefs entered for
each factor (nodes within the network), the
model will produce an overall measure of
the requirements volatility that should be
expected during the system’s development.

Each volatility factor is ranked from 1 to 4.
A 1 represents a factor with minimal
expected impact on the system. A 4
represents a factor with a major impact, with
a score of 2 or 3 being somewhere between
these two extremes. As this rating scheme is
inherently qualitative, the program manager
must establish some ground rules for
determining how these ratings should be
applied to maintaining consistent results.
Also, while the program manager could

99

assign one person to make volatility
judgments and complete the model, the
resulting information would not be as useful
as having several people with different
perspectives on the program do so. By
having several people work on the model,
biases tend to cancel out, and a true measure
of potential volatility emerges.

After each volatility factor is ranked, the
data is entered into the BN tool. For the
examples in this paper, the Netica tool was
used. Assuming prior information was
entered into the BN tool correctly; the tool
will return a probability distribution that can
be used to predict the level of requirements
volatility the program may experience over
its lifecycle. For the model in this paper, the
Netica tool returns a probability distribution
ranked between 1 and 10. A 1 indicates a
program with a very low level of potential
volatility, while a 10 represents a program
with an extreme amount of potential
volatility.

The prediction provided by the model is just
that — a prediction. It should not be used as
the sole basis for justifying risk mitigation
strategies, especially expensive ones, to
counteract the effects of volatile
requirements. Rather, the results of the
model combined with the experience of the
program team work together to draw a
reasonable inference and serve as a tool for
mitigating potential requirements
development risks. One way a program
manager could use the model would be to
identify the top 3-4 volatility risks and
concentrate risk reduction efforts on those
items, This procedure would work
extremely well with a spiral development
method. During spiral development,
requirements will constantly shift, especially
early in the lifecycle. Using the BN to
predict the most likely sources of volatility
and linkages between volatility factors at the

beginning of each spiral will give the
program manager the information needed to
begin risk reduction activities.

Conclusion:
This paper outlines one method for
predicting the level of requirements

volatility a system may experience during
the development phase of the SE lifecycle.
This prediction, with its statistical bases,
provides system stakeholders with greater
visibility concerning the root causes of
volatility in a given program and some clue
as to what portions of the system’s
development lifecycle are most likely to
suffer from volatile requirements.

The outlined method is designed to be
generic enough to be applied to many
different development domains, and data
captured about the impact of specific
volatility factors can be reused by future
programs to provide progressively better

predictions of overall requirements volatility.

This method also provides a high degree of
flexibility to its user. By identifying
additional volatility factors or inferring
relationships between factors, a program
manager can easily customize the BN to
reflect the unique issues and other
circumstances for his system.

The information used to develop the priors
for the model was good enough to show the
concept of using a BN for volatility
prediction is sound. The next step for the
method is to apply the model in a systems
development environment and to judge how
well the model predictions are useful to the
systems stakeholders and reflect the actual
level of requirements volatility the system
experienced. As more information is added
to the model, the model will become a better
indicator of potential volatility.

100

References:

Armour, F., Catherwood, B., Beyers C., “A
Framework for Managing Requirements
Volatility using Function Points as
Currency.” International Function Point
Users Group Annual Conference, San
Diego, CA, September 2000.

Boehm, B., “Spiral Development,
Experience, Principles, and Refinement.”
Briefing to the Ballistic Missile Defense
Organization, The Pentagon, February
2000.

Brooks, F., “No Silver Bullet: Essence and
Accidents of Software Engineering.” /EEE
Computer, April 1987, pp 10-19.

CMMI for Systems Engineering, Software
Engineering, and Integrated Product and
Process Development vi.1. Software
Engineering Institute, Carnegie Mellon
University, Pittsburgh, PA. 2001.

Christel, M., Kang, K., “Issues in
Requirements Elicitation.” Technical
Report CMU/SEI-92-TR-12, SEI Carnegie
Mellon University, Pittsburgh, PA. 1992.

Jenson, F., An introduction to Bayesian
Networks. Springer-Verlag, NY, 1997.

Jones, C., Assessment and Control of
Software Risks. Prentice-Hall International,
Englewood Cliffs, NJ, 1994.

Koller, D., Pfeffer, A., “Object-Oriented
Bayesian Networks.” Proceedings of the
13™ Annual Conference on Uncertainty in
Artificial Intelligence (UAI-97) Providence
RI, August 1997, pp 302-313.

Laskey, G., “Combat Identification with

Bayesian Networks.” Student Paper,
SEOR Department, George Mason
University, 2002.

Laskey, K., Bayesian Inference and

Decision Theory, SYST 644 Class Notes.
Dept. of Systems Engineering, George
Mason University,
http://ite.gmu.edu/~klaskey/SYST664/SY
ST664.html Spring 2003.

Laskey, K., Barry, P., Brouse P,
“Development of Bayesian Networks from
UML Artifacts.” Dept. of Systems
Engineering, George Mason University,
2002

Lee, P., Bayesian Statistics, An Introduction.
2" Ed.; Oxford University Press, New
York, 1989.

Mahoney S., Laskey, K., “Network
engineering for complex belief networks.”
Proceedings of the 1 2™ Annual conference
on Uncertainty in Artificial Intelligence.
UAI-96, 1996, pp 389-396.

Myers, M, “A Knowledge Based System for
managing Software Requirements
Volitility.” Doctorial ~ Thesis, George
Manson University, Fairfax, VA., 1988

Robert, C., The Bayesian Choice, 2" Ed.
Springer Texts in Statistics, New York,
2001.

Solomon, P., “Managing Software Projects

with Earned Value.” Northrop Grumman

Corporation Internal Paper,
solompa@mail.northgrum.com, 2000.

Sommerville, 1., Sofiware Engineering,
Fourth Edition. Addison-Wesley
Publishing, Wokingham, England, 1992

orge Mason University, Fairfax, VA. 2001.

101

Stark, G.. et al., “An examination of the
Effects of Requirements Changes on
Software Maintenance Releases.” 7o be
published in the Journal of Software
Maintenance, available at
http://members.aol.com/geshome/iblieve/j
smregres.pdf 2002.

Stokes, D., “Requirements Analysis.”
Computer Weekly Software Engineer’s
Reference Book, 1991, pp 3-21.

von Winterfeldt, D., Edwards, W., Decision
Analysis and Behavioral Research,
Cambridge University Press, Cambridge
MA, 1986

Wheatcraft, L., “Delivering Quality
Products that Meet Customer
Expectations.” Cross Talk, VOL 16, No. 1,
January 2003, pp 11-14.

Wilson, W., “Writing Effective
Requirements Specifications.”
Proceedings, Software Technology

Conference, April 1997.
York, D. “An early indicator to Predict

Requirements Volatility” Doctorial Thesis,
Ge

